Полная расшифровка хромосомы Х, недавно законченная генетиками, практически не оставляет сильному полу надежд на выживание


из Эксперта

Как известно, в подавляющем большинстве стран мужчины живут существенно меньше, чем женщины. Разнообразные отчеты медицинских учреждений свидетельствуют: повышенная заболеваемость и смертность наблюдается у мужчин почти по всем известным болезням, кроме разве что некоторых гонококковых инфекций и коклюша. Более того, по данным зоологов, этот дисбаланс здоровья у самцов и самок не ограничивается человеческой популяцией. Так, согласно одному из недавно проведенных масштабных исследований, в 62 из 70 видов (89%), подвергшихся сравнительному анализу (были изучены нематоды, моллюски, ракообразные, насекомые, паукообразные, птицы, рептилии, рыбы и, разумеется, млекопитающие), самцы живут меньше, чем самки.

Из всего сказанного напрашивается вывод: повышенная смертность мужского пола, по-видимому, - универсальное явление в земной фауне. Каковы же причины подобной нелюбви матери-природы к самцам-производителям? Научных теорий, пытающихся так или иначе обосновать этот биологический феномен, к настоящему времени накопилось уже немало. В качестве возможных объяснений предлагались чрезмерно крупные размеры особей мужского пола и/или их слишком яркая расцветка, а также повышенная травмоопасность - самцы подвергаются большему риску из-за того, что на них лежит ответственность за добычу пищи, охрану территории и проч.; свою роль играет и метаболический фактор.

Однако во многом благодаря бурному развитию в последние несколько десятилетий генетики сегодня на первый план вышла так называемая теория дисбаланса генов. Как полагают сторонники этой теории, основная причина высокой смертности самцов-животных - их гетерогаметная конституция, или отсутствие второй Х-хромосомы в генетическом наборе мужского организма (подробнее см. "XY и ХХ").

Иными словами, поскольку в хромосомном наборе самцов, в отличие от самок, вооруженных парой Х-хромосом, имеется только одна половая хромосома - Х (вторая же, исключительно мужская половая хромосома, Y, как следует из многочисленных исследований, за многие миллионы лет эволюции постепенно выродилась, сохранив в своем составе, по сути, лишь минимально необходимую для продолжения рода генную коллекцию), различные повреждения или случайные мутации генов в этой мужской Х-хромосоме с гораздо большей вероятностью остаются безнаказанными и наследуются потомками мужского пола по признаку сцепленности с полом.
Вторая хромосома просыпается
18 марта 2005 года коллектив ученых, ядро которого составили исследователи из британского Wellcome Trust Sanger Institute (Кембридж), опубликовал в журнале Nature самый подробный на сегодняшний день анализ Х-хромосомы, базирующийся на дешифровке 99,3% ее общего генетического кода. Разложение на первичные составляющие самой большой хромосомы человеческого генома (ее общий размер составляет 155 млн пар оснований) - задача, для решения которой потребовались титанические усилия многих тысяч ученых, а также самые мощные компьютеры и прикладные программы.

Судя по публикации, уже объявленной рядом мировых СМИ сенсационной, "теория дисбаланса" переходит в разряд общепринятых в современной науке. Из 1098 генов, обнаруженных в Х-хромосоме (а это примерно 4% от общего числа всех человеческих генов), более трехсот имеют прямое или косвенное отношение к различным наследственным заболеваниям, что, в свою очередь, составляет более 10% от всех известных науке генных болезней. Как отмечает руководитель исследовательской группы британского Института Сэнджера д-р Марк Росс, "нарушения генов в Х-хромосоме проявляются в основном у мужчин, поскольку у последних отсутствует 'запасная' (здоровая) копия этой хромосомы, тогда как у женских особей негативные последствия генных мутаций в одной Х-хромосоме, как правило, нивелируются благодаря эффективной компенсационной деятельности второй Х-хромосомы".

Пока генетикам удалось четко опознать 168 таких "плохих генов" в Х-хромосоме. Наиболее характерные примеры сугубо мужских заболеваний, виновником которых являются эти гены, - гемофилия, дистрофия Дюшенна, при которой происходит атрофия мышц, синдром Данкана (болезнь иммунной системы), синдром Альпорта (заболевание почек) и т. д.

Кроме того, мутации генов Х-хромосомы - причина различных форм умственной отсталости, которым также более подвержены мужчины. Так, по словам академика РАМН директора медико-генетического научного центра Евгения Гинтера, к настоящему времени в Х-хромосоме уже выявлено более трех десятков генов, в той или иной степени имеющих отношение к этой болезни, и, скорее всего, черный список еще пополнится.

И наконец, одно из самых неприятных открытий: около 10% генов Х-хромосомы принадлежат к особому семейству, представители которого подозреваются в причастности к онкологическим заболеваниям. Впрочем, сведения, которыми располагает современная медицина об этих генах, пока крайне скудны, поэтому делать далеко идущие выводы на сей счет ученые не торопятся.

Из не слишком большого объема позитивной информации, представленной авторами расшифровки Х-хромосомы, самыми растиражированными, безусловно, следует считать уточненные данные о функционировании в женском организме второй Х-
хромосомы. Ученых долгое время озадачивал тот факт, что у женщин две Х-хромосомы, содержащие двойной набор одинаковых генов, тогда как мужчины вынуждены обходиться куцым Y-огрызком, в котором насчитывается на порядок меньшее число генов (по данным на 2003 год, в Y-хромосоме найдено всего 78 генов, причем 54 имеют функциональные соответствия в Х-наборе). Иными словами, получается, что у всякой женщины в целом на 4-5% больше генов, чем у любого мужчины.

В начале 60-х годов прошлого века британский генетик Мэри Лайон, изучавшая генетические факторы, влияющие на специфику окраски шерсти у самок мышей, пришла к весьма неожиданному выводу: в каждой клетке организма самок работает только одна Х-хромосома, а вторая молчит, будучи практически полностью инактивированной. Причем, как выяснилось позднее, это отключение второй Х-хромосомы в клетках женских особей, срабатывающее практически у всех млекопитающих (в том числе и homo sapiens), происходит еще в процессе эмбрионального развития.

Конкретные генетические механизмы, обеспечивающие отключение запасных Х-хромосом в женских клетках, пока изучены лишь в самых общих чертах. Так, лишь в середине 90-х годов генетиками было установлено, что главный контролер этого процесса - особый ген Xist, расположенный в самой Х-хромосоме. Этот ген продуцирует очень крупные молекулы специфической РНК (также называемой XIST, только большими буквами), действующей лишь на ту Х-хромосому, которая его и произвела. Расползаясь вдоль по хромосоме от места синтеза, молекулы XIST окутывают ее, подобно кокону и тем самым лишают работоспособности.

Однако, согласно новейшим исследованиям генетиков, подтвержденным в том числе и авторами публикации в Nature, на самом деле весь этот процесс инактивации вторых Х-хромосом в женских клетках далеко не так совершенен: многие гены вроде бы неактивной Х-хромосомы каким-то образом ускользают от Xist и как ни в чем ни бывало продолжают производить белки, дублирующие продукцию их аналогов в нормальной Х-хромосоме.

Один из авторов статьи в Nature профессор Duke University (США) Хантингтон Уиллард полагает, что, "возможно, именно в несовпадении уровня генной экспрессии между полами и кроется причина их различий как в гендерном плане (социальных моделях поведения мужчин и женщин), так и в базовых механизмах защиты организма от наследственных заболеваний".

Доля таких "невыключенных" генов в запасных женских Х-хромосомах, по утверждению специалистов из Института Сэнджера, составляет от 15 до 25% (15% - это нижняя планка; у многих обследованных женщин наблюдалась более высокая генная активность). Опять-таки причины и механизмы этого генного разнобоя в работе женских Х-хромосом пока остаются невыясненными. Комментируя для нашего журнала очередную загадку природы, академик Гинтер лишь недоуменно пожал плечами: "Исходя из полученных результатов, можно говорить, что в целом уровень экспрессии генов у женщин больше, чем у мужчин, и у разных женщин эта доза также сильно разнится, но вроде живут-то они (женщины. - 'Эксперт') одинаково".
Эволюция через деградацию
Еще одна важнейшая тема, внимание к которой было в очередной раз привлечено последними исследованиями генной структуры Х-хромосомы, - особенности исторической эволюции половых хромосом человека. По мнению Евгения Гинтера, именно эволюционный блок мартовской публикации представляет наибольший интерес для большой науки.

Согласно наиболее популярной сегодня теории происхождения полов, изначально, то бишь с момента зарождения жизни на нашей планете, и, скорее всего, примерно до середины периода господства динозавров (300 млн лет до н. э.) специального генетического механизма разделения полов на Земле не было в принципе. У тех же рептилий (в том числе и современных) пол потомства определяется исключительно температурой внешней среды, в которой созревает оплодотворенное яйцо: при одной температуре из яйца вылупляется самка, при другой - самец.

В какой-то до сих пор не вполне понятный для науки момент у ряда наиболее прогрессивных видов, к числу которых следует отнести блох, бабочек, птиц и, разумеется, новых героев эволюции - млекопитающих, из общего стандартного набора хромосом по также не вполне понятным причинам выделились половые хромосомы. В частности, как полагают генетики, хромосомными предками современных человеческих половых хромосом X и Y были неспециализированные аутосомы N1 и N4 курицы. Причем вначале эти новые половые хромосомы ничем друг от друга не отличались, кроме того, что Y несла ген детерминации мужского пола, а X - нет. Об этой же изначальной аналогичности свидетельствует и то, что более половины из немногих сохранившихся сегодня на Y-хромосоме генов имеет пару на хромосоме Х.

Однако в ходе последующей эволюции в изначально практически идентичных генах этих хромосом начали накапливаться мутации, и генетические структуры X и Y стали все больше и больше отличаться друг от друга.

Многие генетики полагают, что печальная судьба непарной Y-хромосомы была предрешена сразу же после разделения хромосом на половые и соматические. Не имея, в отличие от Х-хромосомы, эффективных механизмов для ремонта и восстановления поврежденных генов, Y-хромосома стала постепенно терять один за другим эти "единицы наследственности" и, по прогнозам фаталистов, в ближайшие пару сотен тысяч лет должна будет превратиться либо в генетическую пустышку, не несущую никакой наследственной информации, либо вообще
полностью исчезнуть из генома.

Если исходить из формальных соображений, теория скорой гибели мужского пола, безусловно, выглядит вполне логичной. Действительно, если взять за основу человеческий геном, то, по сути, в Y-хромосоме почти не осталось "осмысленных записей", тогда как изначально на ней, так же как и на Х-хромосоме, располагалось около 1000 генов. Большинство же из оставшихся сегодня 78 генов Y-хромосомы имеют крайне узкую специализацию и отвечают за образование сперматозоидов и развитие семенников.

Продолжающееся уменьшение Y-хромосомы, а затем и ее полное разрушение может привести к сильной модификации мужского пола и появлению сначала мужчин с преобладающим женским типом поведения (гомосексуалистов), а затем и вовсе к появлению недоразвитых женоподобных существ, то есть людей с одной Х-хромосомой. Такие люди известны медицине и сегодня. Они называются носителями синдрома Шерешевского-Тернера. У людей с этим синдромом верхняя часть туловища такая же, как у мужчин, а нижняя - как у женщин.


Что такое хромосома

Основоположник классической генетики Грегор Мендель в 60-е годы XIX века впервые сформулировал базовые принципы организации наследственного материала в живых организмах. На основании своих экспериментов по контролируемому скрещиванию растений Мендель пришел к заключению, что наследственный материал дискретен, то есть представлен отдельными материальными единицами, отвечающими за развитие определенных признаков организмов. Позднее эти единицы были названы генами (термин был предложен в 1909 году датчанином Вильгельмом Иогансеном).

В свою очередь, гены, минимальные единицы наследственности, расположены в особых ядерных структурах клеток, хромосомах. Хромосомы (в переводе с греческого - "окрашенные тела") были открыты в 1894 году немецким ученым Вильгельмом Фридрихом Гофмейстером, который установил, что перед тем, как клетка делится и образует новые дочерние клетки, ее ядро распадается на более мелкие части, которые можно окрасить особыми анилиновыми красителями (отсюда, собственно, и название хромосом). Позднее ученые установили, что на нитевидные хромосомы распадается ядро любой растительной или животной клетки.

XY и ХХ

Ровно сто лет назад, в начале 1905 года, двумя американскими учеными, Нетти Стивенс и Эдмундом Бичером Уилсоном, было впервые высказано предположение о том, что в хромосомном наборе мужских особей присутствует "специфическая единица", которая не имеет аналога в женском организме. Рассматривая под микроскопом структуру сперматозоидов подопытных насекомых, они независимо друг от друга пришли к выводу, что в половине этих клеток есть хромосомы, не обнаруживающиеся в яйцеклетках самок. В дальнейшем Стивенс и Уилсон разработали более детальную теоретическую концепцию, постулирующую, в частности, что, за исключением сперматозоидов и яйцеклеток (половых клеток), во всех остальных (соматических) клетках животных обоего пола имеется одинаковый парный набор хромосом. Так, у homo sapiens по 46 хромосом во всех клетках, за исключением половых, где их в вдвое меньше.

Что же касается пресловутой специфической мужской хромосомы, американские биологи предположили, что она, по всей видимости, является сильно усеченной версией описанной незадолго до этого другой половой хромосомы, условно названной Х. Усеченная мужская хромосома получила буквенную приставку Y, мужские особи обзавелись альтернативным обозначением XY (поскольку в их половых клетках было выявлено по одному экземпляру Х и Y хромосом), тогда как женские, обладающие двойным набором Х-хромосом, получили аббревиатуру ХХ.

За многие десятилетия, прошедшие с момента этого важнейшего открытия, генетики не слишком преуспели в пополнении своих скудных знаний о внутренней структуре и особенностях работы хромосом, и лишь к концу прошлого века кропотливый поиск информации стал приносить заметные результаты. Поставленный на поток процесс секвенирования (черновой расшифровки) геномов различных живых организмов позволил ученым за очень короткое время значительно продвинуться в понимании базовых биологических процессов, важнейшим из которых, безусловно, является механизм передачи наследственной информации.

Первый черновой вариант половой Х-хромосомы человека, в котором, впрочем, присутствовали значительные прорехи, был получен генетиками еще в 2001 году. Два года назад группой специалистов под руководством американца Дэвида Пейджа из Массачусетсского технологического университета была впервые расписана полная генетическая последовательность человеческой Y-хромосомы. Уже к концу 2004 года ученые располагали подробной информацией о структуре "обычных" (неполовых) хромосом 5, 6, 7, 9, 10, 13, 14, 19, 20, 21, 22 (все неполовые хромосомы называются аутосомами и формально различаются только номерами).