Оказывается, обычные мячи, которые появились на соревнованиях за кубок FIFA ещё в 1970 году, можно достаточно долго и увлекательно модифицировать. И дело тут совсем не в улучшении материалов или использовании каких-то современных технологий, а в полёте фантазии. Математической фантазии.Согласно довольно строгим правилам, покрышка обыкновенного спортивного мяча состоит из 32 кусочков в форме правильных выпуклых фигур – 12 пятиугольников и 20 шестиугольников, расположенных рядом друг с другом так, что они образовывают закрытую пространственную фигуру, которая напоминает сферу. Это, так сказать, спортивное определение футбольного мяча.
А теперь выясняется, что в порядок этой строго заданной фигуры можно вносить самые разнообразные изменения. И от кого бы вы думали исходит этот анархистский импульс? Ни за что не поверите – всё от тех же людей, обожающих точные определения – от математиков.


Как утверждает Иварc Петерсон (Ivars Peterson) в своей статье о матэкспериментах с футбольными мячами, модели этих спортивных снарядов вполне могут быть преобразованы в другие мячи сферической и даже тороидальной формы.


Автор, правда, в оригинале говорит о форме пончика, но, думается, что его утверждение и без того звучит несколько шокирующее.

Дитер Котшик (Dieter Kotschick), математик из Мюнхенского университета (Mathematisches Institut der Universität München), поясняя неожиданную ситуацию, информирует о том, что "для математика футбольный мяч – это интригующая головоломка".
Но тут же он задаётся целым рядом вопросов, о которых нематематик наверняка даже и не задумается: есть ли другой способ расположить кусочки покрышки? Можно ли использовать другие фигуры вместо пяти— и шестиугольников? И вообще, могут ли мячи выглядеть как-то иначе?


Котшик говорит, что футбольный мяч соответствует следующим требованиям, опирающимся на теорию графов:



Он является многогранником, состоящим исключительно из пяти— и шестиугольников;

Пятиугольники своими сторонами касаются только шестиугольников;

Стороны шестиугольников могут касаться сторон как пяти-, так и шестиугольников.


Если потребовать, чтобы в вершинах соприкасались три фигуры, то получится обычный мяч. Но если это требование изменить, то возможными станут многие другие варианты дизайна.


Сделать это можно с помощью математического аппарата, называемого разветвлённым покрытием

Такое своеобразное развлечение можно назвать научным, ведь футбольный мяч вполне можно назвать математическим объектом. Более того, его модель получила место в классификации геометрических фигур, и называется она "усечённый икосаэдр"



Этим методом вы, кстати, можете создать бесконечное множество вариантов дизайна мяча. К примеру, если сделать восемь копий так же разрезанной по меридиану поверхности мяча, то получится новый мяч с 96 пятиугольниками и 160 шестиугольниками. Трудновато представить себе этого пятнистого футбольного монстра на поле, но и он будет удовлетворять упомянутым требованиям.

Кстати, для этой версии мяча разрезанную поверхность потребуется сжимать не до полусферы а до… Пусть это будет маленьким "заданием на дом".


Существует ещё множество самых разнообразных опытов, в которых происходят такие перемены, которые словами описать труднее.

Например, математик Майкл Тротт (Michael Trott) предложил модификацию, которая называется тройным покрытием сферы Римана , в процессе построения которой из одного мяча формируется новый, имеющий три совпадающие поверхности. То есть, фактически, фигура проходит ряд изменений, которые превращают мяч… сам в себя. В общем, советуем посмотреть ролик (2,68 мегабайта).



Если же сделать пару небольших ромбических разрезов, то мяч можно преобразовать в тор (то есть, бублик или пончик – кому как по вкусу). Это изменение основано на так называемой гомотопности сферы и её растянутой проекции, сделанной вдоль разреза (квадратная форма которого растягивается до окружности) на некоторое подобие трубы.

А гомотопность — не что иное, как свойство этих фигур непрерывным образом деформироваться друг в друга. После совершения этой процедуры края трубы (бывшие некогда разрезами на сфере) соединяются – получается тор.
Интересно, как математики умело доказывают, что мяч можно получить из самых разнообразных фигур, даже завязанных узлом-трилистником, который, как считается, развязать невозможно.


Другое дело — математика на стыке с футболом – тут разрешено многое. Действительно, сложную фигуру легко можно превратить в банальный мяч.



На первый взгляд, похоже на взрыв. В самом деле, никакого баловства. Посмотрите внимательнее: сначала элементы радиально удаляются от закрученной оси трилистника, а после собираются согласно тому же математическому преобразованию, что и в предыдущем случае.




Вообще, тут всё серьёзно: вот, к примеру, заставил Майкл Тротт свой футбольный мяч дышать. На первый взгляд – шутка. А оказывается, "вдохнувший" и "выдохнувший" мячи отличаются значением лишь одного параметра в формуле, по которой они переходят друг в друга. Получилось не только красиво и забавно, но и научно.

В общем, как видите, математика и футбол нашли общую точку. И, что приятно, не разветвления, а пересечения. Конечно, учёные тут позволяют себе то, чего в реальности трудно достичь – разрезать и сшивать мяч, растягивать его в тор, закручивать и раскручивать во всякие трилистники (хорошо, что они ещё до самих футболистов не добрались).


Тем не менее, модель самого обычного, родного "круглого" мяча всегда присутствует в изысканиях математиков – либо до, либо после трансформации. И самое главное – ни красная карточка, ни пенальти, ни удаление с поля за это не грозят.